Fort Boyard Le Forum
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.

Mathématiques boyardesques

+5
garsim
Stroboyard
Bayadrien
rhyolite
Pix
9 participants

Page 3 sur 8 Précédent  1, 2, 3, 4, 5, 6, 7, 8  Suivant

Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  Pix Dim 20 Mar 2016 - 19:29

hélium a écrit:Pour le problème 5a), vu que je suis en train de m'embarquer dans des calculs un peu tarabiscotés, je vais tenter la solution naïve : 5*3 = 15... Neutral
Super10 a écrit:Pour la question a), j'aurais également tenté 15.
Donc pour la b), je tenterais à tout hasard 3,25.
maximax a écrit:Pour cette nouvelle question, je dirais :
1) 12,5
2) 2,45
Chris K. a écrit:5)a) 15 ( mais c'est trop tard... )
5)b) 7,5
Non, que des mauvaise réponses No
La bonne réponse n'est pas non plus extrêmement évidente à trouver, il faut un minimum de calcul. La moyenne sur une flèche n'est pas de 3, on a bien plus de chance de faire 1 ou 2 que 4 ou 5.

@maximax, j'ai l'impression que ton raisonnement est bon, mais je crois que tu as supposé que le "5" était 4 fois plus large que les autres et non 2 fois, tu t'es compliqué la vie pour rien ! Laughing
Pixelax a écrit:En d'autres termes, le rayon de la cible est divisé en 5 parties égales, chacune correspondant à un secteur.
Du coup la b) est fausse aussi. Mais tu es sur la très bonne voie Wink (ou alors c'est une coïncidence, mais j'y crois pas trop ^^)

Pix
Fan-Imbattable
Fan-Imbattable

Inscription : 26/01/2015

Messages : 3646

Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  maximax Dim 20 Mar 2016 - 19:51

non, j'ai pas mis 4 fois la largeur pour le 5, mais je viens de me rendre compte de mon erreur.

Je réessaye :
a) 11,39
b) 2,24
maximax
maximax
Grand-Fan de Fort Boyard
Grand-Fan de Fort Boyard

Inscription : 02/06/2010

Messages : 5364
Boyards : 10389


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  Pix Dim 20 Mar 2016 - 21:39

maximax a écrit:non, j'ai pas mis 4 fois la largeur pour le 5, mais je viens de me rendre compte de mon erreur.
Ah ? Eh bien on trouverait exactement les résultats que tu as proposés pourtant ! Razz

maximax a écrit:Je réessaye :
a) 11,39
b) 2,24
Toujours pas, mauvaise réponse No

Pour bien commencer : considérez que la cible a pour rayon 5, ça simplifiera les calculs.

Bien évidemment, il n'est pas complètement exclu que ce soit moi qui me soit planté dans le raisonnement et/ou dans le calcul. Vous pouvez tout à fait porter réclamation ici même en détaillant votre réponse, ou par MP si vous ne voulez pas que les autres voient ce que vous avez fait ^^


×
Pix
Pix
Fan-Imbattable
Fan-Imbattable

Inscription : 26/01/2015

Messages : 3646
Boyards : 8107


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  maximax Dim 20 Mar 2016 - 21:57

Pixelax a écrit:
maximax a écrit:non, j'ai pas mis 4 fois la largeur pour le 5, mais je viens de me rendre compte de mon erreur.
Ah ? Eh bien on trouverait exactement les résultats que tu as proposés pourtant ! Razz

Oui, parce qu'en fait, j'ai confondu rayon et diamètre à un moment, et mathématiquement parlant, ça revient au même que ce dont tu parlais Wink

Et maintenant, je viens de me rendre compte de ma nouvelle erreur, je sais plus compter jusque 5 :mdr

Je retente : Laughing
a) 11
b) 2,16
maximax
maximax
Grand-Fan de Fort Boyard
Grand-Fan de Fort Boyard

Inscription : 02/06/2010

Messages : 5364
Boyards : 10389


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  Pix Dim 20 Mar 2016 - 23:28

maximax a écrit:Et maintenant, je viens de me rendre compte de ma nouvelle erreur, je sais plus compter jusque 5 :mdr
Ça promet pour la suite... Razz

maximax a écrit:Je retente : Laughing
a) 11
b) 2,16
Cette fois le compte est bon ! Bonne réponse ! :bienn

a) Déjà, le plus simple est de ne considérer qu'une fléchette dans un premier temps. Posons X le score obtenu ainsi. La probabilité que la fléchette tombe dans un secteur est proportionnelle à l'aire de ce secteur (loi uniforme).
Si on considère que le rayon de la cible est de 5, son aire est de 25π. Le deuxième disque est de rayon 4, donc son aire est de 16π. Du coup, l'aire du secteur "1" est de 9π. La proba de tomber dedans est donc de 9π/(25π) = 9/25.

En raisonnant ainsi, on peut déterminer complètement la loi de X :

k12345
P(X=k)9/257/255/253/251/25

Ce que l'on cherche est l'espérance de X : E[X] = Σ(k×P(X=k)) = (9×1+7×2+5×3+3×4+1×5)/25 = 11/5.

La réponse à la question est E[5X] = 5E[X] = 11.


b) Comme vous le savez sûrement, les matheux sont des fainéants : ils n'aiment pas refaire des calculs qu'ils viennent de faire. C'est le cas ici, on va se ramener au cas précédent.

Quand on analyse le problème, on se rend compte qu'il ne nous manque qu'une seule chose : la probabilité que la fléchette du candidat tombe dans la cible. Comme tout à l'heure, il s'agit d'un rapport d'aire. Le carré a un côté 4 fois plus important que le rayon du cercle, la probabilité recherchée est donc de π/42 = π/16.

Le score moyen du candidat sur une fléchette sera donc celui du Maître multiplié par π/16. De même sur 5 fléchettes.
La réponse est donc 11π/16 ≈ 2,16.


Là pour le coup, les hypothèses ne sont pas vraiment conformes à la réalité, mais c'était le moyen le plus simple de modéliser ce duel mathématiquement. On peut faire des suppositions plus réalistes, mais les calcul deviennent vite beaucoup plus lourds.

Si vous voulez plus d'explications sur tel ou tel point de la démonstation (ou que vous n'êtes pas d'accord), n'hésitez pas, j'essaye d'être concis Wink


Maximax marque 4 points et prend seul la tête du classement :
Classement provisoire :

Mais rien n'est joué, rien que sur le prochain problème il y a au moins 5 points à prendre :


Problème 6 - Le Bonneteau


Le candidat adopte la méthode Christophe Beaugrand : pas besoin de regarder le magicien, de toute façon il répond au pif ^^
Pour simplifier, on va supposer qu'il peut faire au plus 7 tentatives durant le temps de la clepsydre (en fait ça varie beaucoup selon les émissions... Christophe Beaugrand justement n'en n'a fait que 4, alors que Stéphanie de Monaco en a fait le triple ! Laughing Vive le montage !).

a) Quelle est la probabilité que le candidat ne trouve aucune petite clé ? (2 pts)

b) Quelle est la probabilité que le candidat gagne la clé ? (3 pts)


×
Pix
Pix
Fan-Imbattable
Fan-Imbattable

Inscription : 26/01/2015

Messages : 3646
Boyards : 8107


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  garsim Lun 21 Mar 2016 - 20:11

Pour le 6a), je suppose qu'on peut faire un petit coup de Bernoulli et qu'on devrait arriver à une probabilité que le candidat ne trouve aucune petite clé de 0,058 ?

Le 6b), en revanche, le temps de faire l'arbre... Neutral


"Fort Boyard, on oublie toute notre dignité" - Lenni-Kim, 2019
garsim
garsim
Fan-Imbattable
Fan-Imbattable

Inscription : 20/05/2015

Messages : 3243
Boyards : 3199


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  garsim Lun 21 Mar 2016 - 20:24

Purée, éclair d'Eugénie (et désolé pour le double-post, ça m'est revenu juste après avoir posté la réponse précédente...  Embarassed ).

Le 6b), ce ne serait pas quelque chose du genre 1 - (2/3)7 - (7/3)*(2/3)6  - (7/3)*(2/3)5 , qu'on pourrait arrondir en 0,43 ?


"Fort Boyard, on oublie toute notre dignité" - Lenni-Kim, 2019
garsim
garsim
Fan-Imbattable
Fan-Imbattable

Inscription : 20/05/2015

Messages : 3243
Boyards : 3199


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  Pix Lun 21 Mar 2016 - 20:26

Pixelax a écrit:Pour cette question (et pour les suivantes, quand il s'agira de probabilités), vous pouvez donner la valeur exacte et/ou une valeur approchée, exprimée en pourcentage avec une décimale (par exemple 14,3% pour 1/7).

Je t'invite à reformuler tes réponses (y compris la première, attention aux arrondis) Wink


×
Pix
Pix
Fan-Imbattable
Fan-Imbattable

Inscription : 26/01/2015

Messages : 3646
Boyards : 8107


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  garsim Lun 21 Mar 2016 - 20:41

L'informaticien vs. le mathématicien, 2e round ? Laughing

Bon, dans ce cas :
6a) : P = 5,8 %
6b) : P = 42,9 %

... ?


"Fort Boyard, on oublie toute notre dignité" - Lenni-Kim, 2019
garsim
garsim
Fan-Imbattable
Fan-Imbattable

Inscription : 20/05/2015

Messages : 3243
Boyards : 3199


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  Pix Lun 21 Mar 2016 - 21:10

hélium a écrit:L'informaticien vs. le mathématicien, 2e round ? Laughing
Je ne comptais pas en rester là quand même tongue

hélium a écrit:6a) : P = 5,8 %
6b) : P = 42,9 %
Désolé de t'embêter avec ça, mais je ne peux pas accepter ta réponse a) : mauvaise réponse No

En revanche pour la b) : c'est une bonne réponse ! :bienn

a) La probabilité de ne pas trouver une clé lors d'un essai fixé est de 2/3. Comme les 7 sont indépendants, la probabilité de n'en trouver aucune est de (2/3)7 soit environ 5,9 % si l'on arrondit (5,8 % est une troncature).

b) Pas besoin de se prendre la tête avec un arbre (sinon prenez une grande feuille Laughing) ! Le plus simple est d'utiliser la loi binomiale (ce qu'on aurait déjà pu faire pour le Plateau 215, même si on pouvait s'en sortir autrement). Si on note X le nombre de petites clés obtenues, X suit une loi binomiale de paramètres 7 (car 7 essais indépendants) et 1/3 (proba de succès).

Comme son nom l'indique, la loi binomiale utilise les coefficients binomiaux... et c'est là que l'éditeur du forum commence à montrer ses limites. ^^
La loi de X est définie par :
Mathématiques boyardesques - Page 3 Png

Ce que nous recherchons est donc :
Mathématiques boyardesques - Page 3 Png

Et si l'on calcule tout ça avec une machine, on trouve 313/729 ≈ 42,9 %.
Là encore, la proba de gagner en répondant au hasard est relativement élevée : qui l'eût cru ? ^^

On pouvait également passer par l'événement contraire comme tu l'as fait, @hélium. En fait, au début je croyais que la forme que tu avais donnée était fausse.... mais en fait non puisque tu avais déjà fait une simplification :
Mathématiques boyardesques - Page 3 Png


Petit point rapide sur les scores, maximax s'est fait rattrapé !
Classement provisoire :


Il reste donc encore deux points à prendre avec la question a) Smile


Dernière édition par Pixelax le Jeu 2 Mar 2017 - 23:14, édité 1 fois (Raison : Problème de LaTeX)


×
Pix
Pix
Fan-Imbattable
Fan-Imbattable

Inscription : 26/01/2015

Messages : 3646
Boyards : 8107


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  garsim Lun 21 Mar 2016 - 21:19

Pixelax a écrit:Il reste donc encore deux points à prendre avec la question a) Smile
Euh... mais tu ne viens pas de donner la réponse en rebondissant sur mon erreur d'arrondi ? Shocked Laughing
Dans ce cas, je réponds 5,9% si ça peut te faire plaisir... Razz

Pixelax a écrit:
hélium a écrit:L'informaticien vs. le mathématicien, 2e round ? Laughing
Je ne comptais pas en rester là quand même tongue [...]
Comme son nom l'indique, la loi binomiale utilise les coefficients binomiaux... et c'est là que l'éditeur du forum commence à montrer ses limites. ^^
Et encore, j'ai failli écrire POW((2/3), 7) avant que je me souvienne qu'il y avait une balise BBCode pour mettre en exposant... Laughing


"Fort Boyard, on oublie toute notre dignité" - Lenni-Kim, 2019
garsim
garsim
Fan-Imbattable
Fan-Imbattable

Inscription : 20/05/2015

Messages : 3243
Boyards : 3199


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  Pix Lun 21 Mar 2016 - 21:23

Ah, on dirait je me suis fait avoir ! PTDR

Comme vous l'avez vu, j'ai laissé la correction de la question a), qui est donc annulée du coup. Tout ça pour une petite décimale, dommage Razz


Une autre question à la place :

Une stratégie souvent adoptée au Bonneteau est d'éliminer d'office le gobelet le plus évident, là où devrait se trouver la petite clé s'il n'y avait pas de manipulations. On suppose que dans 90% des cas, la clé ne se trouve pas sous ce gobelet (le magicien bluffe donc 1 fois sur 10).

c) Quelle est la probabilité de gagner la clé en adoptant cette stratégie ? (2 pts)

On suppose toujours que le candidat peut faire au plus 7 essais, au hasard parmi deux gobelets à chaque manche (si le magicien bluffe, il n'a aucune chance de trouver la clé ce coup là).


hélium a écrit:Et encore, j'ai failli écrire POW((2/3), 7) avant que je me souvienne qu'il y avait une balise BBCode pour mettre en exposant... Laughing
Rhoo, un chapeau ^ c'est tellement mieux sinon !
Et POW ça me fait trop penser à ça ^^


×
Pix
Pix
Fan-Imbattable
Fan-Imbattable

Inscription : 26/01/2015

Messages : 3646
Boyards : 8107


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  Julien Mar 22 Mar 2016 - 0:00

Je propose 68,35% ( erreur d'arrondi près )


Chris K. is watching you, avec modération bien sûr ^^
Julien
Julien
Fan-Accro
Fan-Accro

Inscription : 03/12/2011

Messages : 2225
Boyards : 3676


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  Pix Mar 22 Mar 2016 - 0:31

Chris K. a écrit:Je propose 68,35% ( erreur d'arrondi près )
Désolé @Chris K., je viens d'embêter @hélium à ce sujet, tu comprendras que, par souci d'équité, je ne peux pas accepter ta réponse... Surtout que le chiffre arrondi est un 5, donc il y a une réelle ambiguïté sur "comment arrondir le 3 ?".

Je t'invite donc à reformuler ta proposition, en arrondissant le pourcentage obtenu avec un (pas deux, pas zéro ^^) chiffre après la virgule (même si c'est un zéro, marquez ",0" pour indiquer que c'est un chiffre significatif) Wink


×
Pix
Pix
Fan-Imbattable
Fan-Imbattable

Inscription : 26/01/2015

Messages : 3646
Boyards : 8107


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  Julien Mar 22 Mar 2016 - 1:06

Bah on va dire 68,4%


Chris K. is watching you, avec modération bien sûr ^^
Julien
Julien
Fan-Accro
Fan-Accro

Inscription : 03/12/2011

Messages : 2225
Boyards : 3676


Revenir en haut Aller en bas

Mathématiques boyardesques - Page 3 Empty Re: Mathématiques boyardesques

Message  Pix Mar 22 Mar 2016 - 20:03

Chris K. a écrit:Bah on va dire 68,4%
Ça c'est une bonne réponse ! :bienn

En fait, si je n'ai pas accepté ta première réponse, c'est parce que l'arrondi était faux (même si tu as précisé "erreur d'arrondi près", c'est trop facile sinon ^^), si tu garde deux chiffres après la virgule, ça aurait fait 68,36 %.

En ce qui concerne la réponse, tout se passe comme dans le cas précédent, seul la proba d'un succès change. Le candidat a une chance sur deux de trouver le bon gobelet dans 9 cas sur 10, soit 9/20. On aboutit à 68,4 % par le même cheminement (loi binomiale).

Un point sur les scores : c'est tojours très serré !
Classement provisoire :


Problème 7 - Les Barreaux


Mathématiques boyardesques - Page 3 Barrea10

Comme d'habitude, on suppose que le candidat répond totalement au hasard (trop perturbé par la Bohémienne pour suivre les palets des yeux certainement ^^).

a) Quelle est la probabilité que le candidat ne gagne aucun barreau ? (1 pt)

b) Quelle est la probabilité que le candidat gagne les 4 barreaux ? (2 pts)

Et comme d'habitude, j'attends pour chaque question une valeur soit exacte sous forme de fraction, soit arrondie (correctement Razz) sous forme de pourcentage, avec une décimale.


×
Pix
Pix
Fan-Imbattable
Fan-Imbattable

Inscription : 26/01/2015

Messages : 3646
Boyards : 8107


Revenir en haut Aller en bas

Page 3 sur 8 Précédent  1, 2, 3, 4, 5, 6, 7, 8  Suivant

Revenir en haut


 
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum